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Unlike the Telephone network or the Internet, many of the next gener-

ation networks are not engineered for the purpose of providing e�cient

communication between various networked entities

Examples of such networks are

• Sensor networks

• Peer-to-peer networks

• Mobile networks of vehicles

• Social networks

• · · ·
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Modern networks lack infrastructure; they exhibit unpredictable dy-

namics and they face stringent resource constraints

Algorithms operating within them need to be

• Extremely simple

• Distributed

• Robust against networks dynamics

• E�cient in resource utilization
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Peer-to-peer network
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Mobile network of vehicles
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Social network
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• Distributed consensus: distributed averaging (2003), ran-

domized gossip (2006), geographic gossip (2008), weighted

gossip (2010), greedy gossip with eavesdropping (2010),

broadcast gossip (2011)

• Convex optimization: dual ascent (mid-1960’s), method

of multipliers (ADMM, late-1960’s), alternating direction

method of multipliers (1976), distributed subgradient meth-

ods (2009), primal-dual method of multipliers (PDMM, 2014)

• Probabilistic inference: (loopy) belief propagation (min-sum

or max-product algorithm, 1982), approximate inference

(linear programming relaxation, 2010)
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• Distributed averaging

– Synchronous

– Asynchronous

• Gossip algorithms:

– Randomized gossip

– Geographic gossip

– Gossip with eavesdropping

– Sum-weight averaging

– Broadcast weighted gossip
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Each node i holds an initial scalar value xi(0) 2 R, and x(0) =
(x1(0), . . . , xn(0))T denotes the vector of the initial node values on

the network.

• The network gives the allowed communication between nodes:

two nodes i and j can communicate with each other if and only

if they are neighbors, i.e., if and only if (i, j) 2 E

• We are interested in computing the average of the initial values

xave =
1

n

nX

i=1

xi(0)
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We consider linear iterations where each iteration k is of the form

xi(k) = Wiixi(k � 1) +
X

j2N (i)

Wijxj(k � 1), i 2 V

Setting Wij = 0 for j /2 N (i) [ i, the iterations can be expressed in

vector form as

x(k) = Wx(k � 1)

We want to choose the weight matrix W so that for any initial vector

x(0), x(k) converges to the vector of averages xave1, where 1 2 Rn

is the vector of all ones.
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We will consider the behavior of

x(k) = W

k
x(0)

If x(k) must converge to the vector of averages given by

xave1 =
11T

n

x(0)

for every initial condition x(0), we must have that

lim
k!1

W

k =
11T

n
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We have the following necessary and su�cient conditions for

lim
k!1

W k =
11T

n

to hold:

• 1TW = 1T

• W1 = 1

• ⇢
�
W � 11T /n

�
< 1

where ⇢(·) denotes the spectral radius
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Example: Random geometric graph, n = 200
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The distributed averaging algorithm is a synchronous algorithm

• Requires global clock (synchronization)

• Sensitive to changes in network topology

Asynchronous algorithms have the advantage of

• Less sensitive to changes in network topology

• Local clock; no synchronization needed

• Execution time is often substantially reduced compared to syn-

chronous implementations
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We want an algorithm where each iteration k is of the form

x(k) = W (k)x(k � 1),

and x(k) converges to the vector of averages xave1, where 1 2 Rn
is

the vector of all ones. That is

lim
k!1

�(k) = lim
k!1

W (k) · · ·W (1) =
11T

n
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• 1TW = 1T

• W1 = 1

• ⇢

✓
W � 11T

n

◆
< 1

Let the expected value of the matricesW (k) be denoted by E{W (k)} =
W . We have

E{�(k)} =
kY

i=1

E{W (k)} = W
k

so that �(k) converges in expectation to

11T

n if W
k ! 11T

n . This

happens if
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Consider the following asynchronous distributed algorithm:

Algorithm:

• In the kth time slot, select a node i at random (uniform distri-

bution, probability Pi = 1/n) and let it contact its neighboring

nodes j 2 N (i).

• At this time, all nodes set their values equal to the average of

their current values.



10

Circuits and Systems group 

Experimental results 

October 20, 2016 19 

0 0.5 1 1.5 2 2.5 3
transmissions ×105

10-12

10-10

10-8

10-6

10-4

10-2

100

102
||x

(k
)-x

av
e 1

||2

Random geometric graph, n=200

maximum-degree weights
optimal constant weights
optimal symmetric weights
asynchronous averaging

Circuits and Systems group 

Asynchronous distributed averaging 

October 20, 2016 20 

Conclusions:

• Asynchronous distributed averaging doesn’t need any global

knowledge of the network

• The algorithm converges at a linear rate

Still the algorithm can be quite sensitive to changes in the network

topology

Solution:

• In a given time slot, each node can communicate with only one

of its neighbours (Gossip algorithms)
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Consider the randomized gossip algorithm which is specified by a ma-

trix P 2 Rn⇥n
of nonnegative entries with the condition that Pij > 0

if and only if (i, j) 2 E.

Algorithm:

• In the kth time slot, select a node i at random (uniform dis-

tribution, probability 1/n) and let it contact some neighbouring

node j with probability Pij .

• At this time, both nodes set their values equal to the average of

their current values.
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• Randomized gossip is slow on random geometric graphs

• We can do better by including additional information:

– knowledge about sensor locations

– knowledge about states of neighboring nodes

– use of broadcast protocols
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Geographic gossip combines gossip with geographic routing

Key assumption: every node i knows its geographic location l(i)
within some compact subset of C ⇢ Rd

• At clock tick k, node i is selected uniformly at random

• Node i chooses a point y uniformly in C (called the target loca-

tion)

• Node i sends the tuple (xi(k), l(i), y) to its one-hop neighbor

j 2 N (i) closest to y until a node, say v, receives the tuple and

has no one-hop neighbor with distance smaller to the random

target than its own
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• Node v decides to accept the tuple or not. If it accepts, it

computes a new tuple (xv(k), l(v), l(i)), which is sent back to

node i via greedy geographic routing

• If v rejects the tuple it chooses a new point y

0
selected uniformly

in C and repeats the previous steps

Sampling geographic locations uniformly induces a nonuniform sam-

pling distribution. Given the volume ⌫v of the Voronoi region of node

v:

• Sensor v accepts the request with probability pa = min(⌧/⌫v, 1)

where ⌧ is a predefined threshold
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• At a high level, geographic gossip exploits geographic informa-
tion to create a new complete communication graph G0(V,E0)
as a overlay on the original graph G(V,E)

• In the new graph some edges are more costly than others because
of the routing required

• On the other hand, the new communication graph is dense so
that gossiping converges more quickly

• The communication costs can be reduced by averaging over the
complete path from source i to the destination v. The resulting
algorithm is called randomized path averaging
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Both geographic gossip and randomized path averaging combine gossip

with geographic routing

• Involves overhead due to localization and geographic routing

• The network needs to provide reliable two-way transmission over

many hops

• Sensitive to packet loss and changes in network topology

Problem can be solved by using greedy gossip with eavesdropping

• Exploits the broadcast nature of wireless communications
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• Unlike previous randomized gossip algorithms, which perform

updates completely at random, greedy gossip with eavesdropping

implements a greedy neighbor selection procedure

• Assumes a broadcast transmission model so that all neighbors

within range of a transmission node receive the message

• In addition to keeping track of its own value, each node tracks

its neighboring values by eavesdropping on their transmissions

• At each iteration, a node is selected uniformly at random and

contacts the neighboring node whose value is most di↵erent from

its own
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As mentioned before, randomized path averaging combines gossip with

geographic routing

• Although e�cient in terms of energy consumption, it requires

some long distance coordination to make sure that all the values

in the route were updated correctly

• Routing information back and forth might as well introduce delay

issues, because a node that is engaged in a route needs to wait

for the update to come back before it can proceed to another

round

• In a mobile network, or in a highly dynamic network, routing the

information back on the same route might even not succeed
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Problem can be solved by using one-way averaging:

• Instead of updating one vector x(k) of variables, it updates a

vector s(k) of sums, and a vector w(k) of weights

• Initialization s(0) = x(0) and w(0) = 1

• At any time, the vector of estimates is x(k) = s(k)/w(k), where
the division is performed element-wise

The updates are computed with column stochastic matrices {D(k)}k�1

s(k) = D(k)s(k � 1)

w(k) = D(k)w(k � 1)



17

Circuits and Systems group 

Sum-weight algorithms 

October 20, 2016 33 

The algorithm is referred to as weighted gossip

The matrix D(k) is column stochastic:

D(k) � 0, 1TD(k) = 1T

which means that sums and weights are conserved. Similar to what

we did before, let

�(k) = D(k) · · ·D(1)

Note that lim
k!1

�(k) 6= 11T

n
since D(k)1 6= 1; sums and weights do

not reach a consensus
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8
><

>:

si(k) =
1

2
si(k � 1)

sj(k) = sj(k � 1) +
1

2
si(k � 1)

and similarly for the weights

In general, when we average over 2 neighboring nodes i and j, we have
(after re-indexing)

D(k) =

0

BB@

1
2 0 0
1
2 1 0

0 0 In�2

1

CCA 2 Rn⇥n,

so that the update equations are given by
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• Broadcast nature of the wireless channel was often not taken

into account in the distributed estimation algorithms

• Information propagation is much faster while broadcasting com-

pared to pairwise exchanges

Broadcast algorithm:

At each global clock tick, choose a sensor uniformly at random that

broadcasts its pair of values in an appropriate way. Then, the receiving

sensors add the received pair of values to their current one
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The update equations are given by

8
<

:

si(k) = (1� di↵
�1)si(k � 1)

sj(k) = sj(k � 1) + ↵�1si(k � 1) 8j 2 N (i)

and similarly for the weights
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i

Di!N (i)(k) =

0

BBBB@

1� di↵�1 0 · · · 0

↵�1 1 · · · 0
...

...
. . . 0

↵�1 0 · · · 1

1

CCCCA

Circuits and Systems group 

Broadcast weighted gossip 

October 20, 2016 38 

Since D(k) � 0 we have ↵ > di. A natural choice is ↵ = di + 1 so

that

Di!N (i)(k) =

0

BBBBB@

1
di+1 0 · · · 0

1
di+1 1 · · · 0
.

.

.

.

.

.

.

.

. 0
1

di+1 0 · · · 1

1

CCCCCA

The algorithm is referred to as broadcast weighted gossip
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