
What acoustic, electromagnetic, and 

elastodynamic waves have in common 

is that in each case the waves are char-

acterized by two fundamental wave field 

quantities. For acoustic waves these 

quantities are the acoustic pressure and 

the particle velocity, electromagnetic 

waves are characterized by the electric 

and magnetic field strength, and for 

elastodynamic waves the fundamental 

wave field quantities are the stress and 

the particle velocity again. In all three 

cases, these quantities are coupled 

through a set of first-order partial dif-

ferential equations, which give a precise 

description of how first-order spatial 

variations of one field quantity are cou-

pled to first-order temporal variations 

of the other quantity. In electromag-

netics, for example, the curl or rotation 

of the magnetic field (a first-order spa-

tial variation) is coupled to first-order 

temporal variations of the electric field 

(Maxwell-Ampere law), while the curl of 

the electric field is coupled to a first-or-

der temporal variation of the magnetic 

field (Faraday’s law). 

To compute an acoustic or electromag-

netic wave field in a complex medium, 

the governing wave equations have 

to be discretized in space resulting in 

large-scale systems of equations that 

can only be solved numerically on a 

computer. What constitutes a large-

scale system is actually not precisely de-

fined, but typically we think of systems 

with at least one million unknowns. In 

addition, these unknowns are time or 

frequency dependent and so we are 

actually dealing with millions of un-

knowns for each fixed time instant or 

frequency of interest. It is not difficult 

to imagine that computing an acoustic 

or electromagnetic wave field through-

out a three-dimensional volume and on 

large time intervals or wide frequency 

ranges of interest is a formidable task. 

Fortunately, in practice we can exploit 

the symmetry of the first-order wave 

equations in our computations and par-

ticular properties of the configuration 

or device of interest can be exploited 

as well. For example, energy conserva-

tion is related to a particular symme-

try property of the wave equations and 

wave field reciprocity is linked to an-

other symmetry property. Both of these 

properties can be used to develop very 

efficient solution strategies for large-

scale wave field computations. When 

modeling wave propagation in complex 

media (or any other physical phenome-

non) all relevant physical laws must be 

satisfied, of course, and symmetry that 

follows from these laws can be exploit-

ed to efficiently compute the wave field 

quantities of interest.   

As an illustration of how we can exploit 

certain properties of a given configura-

tion to efficiently compute required field 

responses, consider the configuration 

shown in Figure 1. The cylindrical bar 

in this figure is a golden nanobar (note 

the scale) and the small arrow located 

just above the bar represents an electric 

dipole source. This simple dipole model 

can be used to compute the spontane-

ous decay rate of a two-level quantum 

Waves come in all forms and shapes. Some are localized like the waves that make a drum vibrate. Others travel for 
long distances like the electromagnetic waves that transmit your latest snapchat message to your friend on the 
other side of this planet. Waves are often used to transport energy or information from one point to another, but 
can also be used to gather information about the location and constitution of some body or object of interest. With 
acoustic waves, for example, we can image a fetus inside a mother’s pregnant belly, while seismic and electromag-
netic waves may be used to image the subsurface of the Earth. 
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Figure 1. Quantum emitter (arrow) locat-
ed above a golden cylindrical nanorod 
(diameter 30nm, length 100nm). The 
emitter is located 10nm above the rod.

“Typically we think of systems with at least 
one million unknowns.”
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emitter (as represented by the dipole 

source). This decay rate depends on the 

surroundings of the quantum emitter 

and can be enhanced by placing the 

emitter in the neighborhood of the gold-

en bar as illustrated in Figure 1. Enhanc-

ing the decay rate of a quantum emitter 

is exploited in many different areas in 

nano-optics and is utilized in light emit-

ting diodes (LEDs), for example. 

To determine this possible enhance-

ment using classical electromagnetic 

field theory, it can be shown that the 

imaginary part of the projection of the 

electric field strength onto the electric 

dipole moment at the location of the di-

pole is required over a frequency inter-

val for which enhancement is expected 

[1]. Now gold is a dispersive material 

meaning that its reaction to the pres-

ence of an electromagnetic field varies 

with frequency. Therefore, a straight-

forward approach would be to select a 

frequency from the interval of interest, 

compute the electric field strength at 

this frequency by solving the large-scale 

discretized Maxwell system for this con-

figuration and repeat this procedure for 

all frequencies in the frequency interval. 

By following this approach, N large-
scale Maxwell systems need to be solved 

for N frequencies of interest leading to 
prohibitively long computation times. 

Fortunately, the spontaneous decay rate 

is essentially determined by a single so-

called quasi-normal mode over the com-

plete frequency interval of interest. This 

mode is a characteristic mode or natural 

vibration of the golden nanobar that is 

excited by the dipole source. The magni-

tude of the x-component of the electric 
field of this mode is illustrated in Figure 

2. Therefore, a much more efficient ap-

proach is to compute this mode since 

then we are essentially done in one step.  

By exploiting the symmetry properties 

of Maxwell’s equations this dominant 

field mode (and additional modes as 

well) can be efficiently computed. In oth-

er words, by exploiting physics-based 

symmetry the same spontaneous decay 

rate results can be obtained as with the 

above-mentioned brute-force approach, 

but at significantly reduced costs. The 

spontaneous decay rate of the emitter in 

case the nanobar is present normalized 

to the decay rate in case the emitter is 

absent is shown in Figure 3. The pres-

ence of the nanobar clearly enhances 

the decay rate of the quantum emitter 

on the frequency (wavelength) interval 

of interest.
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Figure 2. Magnitude of the x-component 
of the electric field of the dominant qua-
si-normal mode.

Figure 3. Normalized spontaneous decay 
rate on wavelength interval of interest.

“We are essentially done 
in one step.”

[1] L. Novotny, B. Hecht, Principles of Nano-Optics, Second Edition, Cambridge University Press, 2012.
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